Lompat ke konten Lompat ke sidebar Lompat ke footer

Widget Atas Posting

 Tulis Artikel dan dapatkan Bayaran Tiap Kunjungan Rp 10-25 / kunjungan. JOIN SEKARANG || INFO LEBIH LANJUT

Calculus Exercise (4) : Tangent Line and Normal Line to a Curve











  1. Find the gradient of the curve $y=3 x^{2}-4 x+3$ at the point where $x=2$.


  2. solution


    $\begin{aligned}
    y&=3 x^{2}-4 x+3 \\\\
    \frac{d y}{d x}&=6 x-4 \\\\
    \left.\frac{d y}{d x}\right|_{x=2}&=6(2)-4\\\\
    &=8\\\\
    \end{aligned}$


    Hence, the gradient of the curve at $x=2$ is 8 .

  3. Given that the gradient of the curve $y=x^{2}+a x+b$ at the point $(2,-1)$ is $1$.
    Find the values of $a$ and $b$.


  4. solution

    $\begin{aligned}
    y&=x^{2}+a x+b \\\\
    \text { At }(2,-1),-1&=(2)^{2}+a(2)+b \\\\
    2 a+b&=-5 \\\\
    b&=-5-2 a \\\\
    \frac{d y}{d x}&=2 x+a\\\\
    \left.\frac{d y}{d x}\right|_{(2,-1)}&=4+a\\\\
    \left.\frac{d y}{d x}\right|_{(2,-1)}&=1\quad \text { (given) } \\\\
    \therefore\ 4+a&=1\\\\
    a&=-3 \\\\
    \therefore\ b&=-5-2(-3)\\\\&=1
    \end{aligned}$





  5. Find an equation of the tangent line and normal line to the graph of the function
    at the given point.






    $\begin{array}{lll}

    {} & \textbf{Function} & \textbf{Point}\\\\
    \text{(a)} & y=-2 x^{4}+5 x^{2}-3 & (1,0)\\\\
    \text{(b)} & y=x^{3}-3 x & (2,2)\\\\
    \text{(c)} & y=(x-2)\left(x^{2}+3 x\right)& (1,-4)\\\\
    \text{(d)} & y=\dfrac{2}{x^{\frac{3}{4}}} & (1,2)\\

    \end{array}$








  6. solution





    $\begin{aligned}
    \text{(a)} \quad \text{ Curve}: y&=-2 x^{4}+5 x^{2}-3\\\\
    \text{Let} \left(x_{1}, y_{1}\right)&=(1,0)\\\\
    \frac{d y}{d x}&=-8 x^{3}+10 x \\\\
    \therefore\ m&=\left.\frac{d y}{d x}\right|_{(1,0)}\\\\
    &=-8+10\\\\
    &=2\\\\
    \end{aligned}$


    The equation of tangent at $\left(x_{1}, y_{1}\right)$ is $y-y_{1}=m\left(x-x_{1}\right)$


    $\begin{aligned}
    &\\
    \therefore\ y-0&=2(x-1) \\\\
    \therefore\ 2 x-y&=2\\\\
    \end{aligned}$


    The equation of normal at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1}&=-\frac{1}{m}\left(x-x_{1}\right) \\\\
    \therefore\ y-0&=-\frac{1}{2}(x-1) \\\\
    \therefore\ x+2 y&=1
    \end{aligned}$






    $\begin{aligned}
    \text{(b)} \quad \text{Curve}: y&=x^{3}-3 x\\\\
    \text{Let} \left(x_{1}, y_{1}\right)&=(2,2)
    \frac{d y}{d x}&=3 x^{2}-3 \\\\
    \therefore\ m&=\left.\frac{d y}{d x}\right|_{(2,2)}&=12-3\\\\
    &=9\\\\
    \end{aligned}$


    The equation of tangent at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1}&=m\left(x-x_{1}\right) \\\\
    \therefore\ y-2&=9(x-2) \\\\
    \therefore\ 9 x-y&=16\\\\
    \end{aligned}$


    The equation of normal at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1}&=-\frac{1}{m}\left(x-x_{1}\right) \\\\
    \therefore\ y-2&=-\frac{1}{9}(x-2) \\\\
    \therefore\ x+9 y&=20
    \end{aligned}$






    $\begin{aligned}
    \text {(c)}\quad \text { Curve: } y&=(x-2)\left(x^{2}+3 x\right)&=x^{3}+x^{2}-6 x \\\\
    \text { Let }\left(x_{1}, y_{1}\right)&=(1,-4) \\\\
    \frac{d y}{d x}&=3 x^{2}+2 x-6 \\\\
    \therefore\ m&=\left.\frac{d y}{d x}\right|_{(1,-4)}\\\\
    &=3+2-6\\\\
    &=-1 \\\\
    \end{aligned}$


    The equation of tangent at \left(x_{1}, y_{1}\right) is


    $\begin{aligned}
    &\\
    y-y_{1}&=m\left(x-x_{1}\right) \\\\
    \therefore\ y+4&=(-1)(x-1) \\\\
    \therefore\ x+y&=-3 \\\\
    \end{aligned}$


    The equation of normal at \left(x_{1}, y_{1}\right) is


    $\begin{aligned}
    &\\
    y-y_{1}&=-\frac{1}{m}\left(x-x_{1}\right) \\\\
    \therefore\ y+4&=1(x-1) \\\\
    \therefore\ x-y&=5
    \end{aligned}$






    $\begin{aligned}
    \text {(d)}\quad \text { Curve: } y&=\frac{2}{x^{\frac{3}{4}}} \\\\
    \text { Let } \left(x_{1}, y_{1}\right)&=(1,2) \\\\
    \frac{d y}{d x}&=-\frac{3}{2 x^{\frac{7}{4}}} \\\\
    \therefore\ m&=\left.\frac{d y}{d x}\right|_{(1,2)}\\\\
    &=-\frac{3}{2}\\\\
    \end{aligned}$


    The equation of tangent at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1}&=m\left(x-x_{1}\right) \\\\
    \therefore\ y-2&=\left(-\frac{3}{2}\right)(x-1) \\\\
    \therefore\ 3 x+2 y&=7
    \end{aligned}$


    The equation of normal at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1}&=-\frac{1}{m}\left(x-x_{1}\right) \\\\
    \therefore\ y-2&=\frac{2}{3}(x-1) \\\\
    \therefore\ 2 x-3 y&=-4
    \end{aligned}$




  7. Find the equations of the tangent and normal lines to the curve $y=3 x^{2}-3 x+2$ at the point where $x=3$.




  8. solution




    $\begin{aligned}
    \text { Curve: } y=3 x^{2}-3 x+2 \\\\
    \text { When } x=3, y=3(3)^{2}-3(3)+2=20 \\\\
    \text{Let}\left(x_{1}, y_{1}\right)=(3,20) \\\\
    \frac{d y}{d x}=6 x-3=3(2 x-1)\\\\
    \therefore\ m=\left.\frac{d y}{d x}\right|_{(3,20)}=3(6-1)=15\\\\
    \end{aligned}$


    The equation of tangent at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1}=m\left(x-x_{1}\right) \\\\
    \therefore\ y-20=15(x-3) \\\\
    \therefore\ 15 x-y=25\\\\
    \end{aligned}$


    The equation of normal at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1}=-\frac{1}{m}\left(x-x_{1}\right) \\\\
    \therefore\ y-20=-\frac{1}{15}(x-3) \\\\
    \therefore\ x+15 y=303
    \end{aligned}$

  9. Find the equation of the tangent to the curve $y=x^{2}+5 x-2$ at the point on the curve where
    this curve cuts the line $x=4$.


  10. solution



    $\begin{aligned}
    \text { Curve: } y &=x^{2}+5 x-2 \\\\
    \text { When } x &=4, \\\\
    y &=(4)^{2}+5(4)-2\\\\
    &=34 \\\\
    \text{Let} \left(x_{1}, y_{1}\right) &=(4,34) \\\\
    \frac{d y}{d x} &=2 x+5\\\\
    \therefore m &=\left.\frac{d y}{d x}\right|_{(4,34)}\\\\
    &=2(4)+5\\\\
    &=13\\\\
    \end{aligned}$


    The equation of tangent at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1} &=m\left(x-x_{1}\right) \\\\
    \therefore\ y-34 &=13(x-4) \\\\
    \therefore\ 13 x-y &=18
    \end{aligned}$


  11. Find the equations of the tangent and normal lines to the curve $y=x^{2}-5 x+6$ at the points
    where this curve cuts the $x$-axis.


  12. solution



    Curve: $y=x^{2}-5 x+6\\\\ $


    When this curve cuts the $x$-axis, $y=0$


    $\begin{aligned}
    &\\
    \therefore x^{2}-5 x+6 &=0 \\\\
    (x-2)(x-3) &=0 \\\\
    x &=2 \text { or } x &=3\\\\
    \end{aligned}$


    Therefore, the curve cuts the $x$-axis at $(2,0)$ and $(3,0)\\\\ $.


    Let $\left(x_{1}, y_{1}\right) =(2,0)$ and $\left(x_{2}, y_{2}\right)=(3,0) $.


    $\begin{aligned}
    &\\
    \therefore\ \frac{d y}{d x} &=2 x-5\\\\
    \end{aligned}$


    Let the gradient of the curve at $(2,0)$ and $(3,0)$ be $m_{1}$ and $m_{2}$ respectively.


    $\begin{aligned}
    &\\
    \therefore m_{1} &=\left.\frac{d y}{d x}\right|_{(2,0)} &=2(2)-5 &=-1 \\\\
    \therefore m_{2} &=\left.\frac{d y}{d x}\right|_{(3,0)} &=2(3)-5 &=1\\\\
    \end{aligned}$


    $\therefore$ The equation of tangent at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1} &=m_{1}\left(x-x_{1}\right) \\\\
    y-0 &=-1(x-2) \\\\
    y &=2-x\\\\
    \end{aligned}$


    The equation of normal line at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1} &=-\frac{1}{m_{1}}\left(x-x_{1}\right) \\\\
    y-0 &=1(x-2) \\\\
    y &=x-2\\\\
    \end{aligned}$


    The equation of tangent at $\left(x_{2}, y_{2}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{2} &=m_{2}\left(x-x_{2}\right) \\\\
    y-0 &=1(x-3) \Rightarrow y &=x-3\\\\
    \end{aligned}$


    The equation of normal line at $\left(x_{2}, y_{2}\right)$ is


    $\begin{aligned}
    & \\
    y-y_{2} &=-\frac{1}{m_{2}}\left(x-x_{2}\right) \\\\
    y-0 &=-1(x-3) \\\\
    y &=3-x
    \end{aligned}$

  13. $P$ is the point $(3,4)$ on the curve $y=3 x^{2}-12 x+13$. Find the coordinates of the point
    of intersection of the normal to the curve at $P$ with the line $x+3=0$.



  14. solution



    Curve: $y=3 x^{2}-12 x+13\\\\ $,


    Line: $x+3=0 \Rightarrow x=-3\\\\ $


    $P(3,4)$ is on the curve.


    Let $\left(x_{1}, y_{1}\right)=(3,4)\\\\ $.


    $\therefore\ \dfrac{d y}{d x}=6 x-12=6(x-2)\\\\ $


    $\therefore\ m=\left.\dfrac{d y}{d x}\right|_{(3,4)}=6(3-2)=6\\\\ $


    The equation of normal line at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-y_{1}&=-\frac{1}{m}\left(x-x_{1}\right) \\\\
    y-4&=-\frac{1}{6}(x-3) \\\\
    y&=-\frac{1}{6}(x-3)+4\\\\
    \end{aligned}$



    When this normal line intersects the line $x+3=0$, $x=-3$.


    $\begin{aligned}
    &\\
    \therefore\ y&=-\frac{1}{6}(-3-3)+4\\\\
    &=5\\\\
    \end{aligned}$


    So, the point of intersection of the normal to the curve at $P(3,4)$ with the line $x+3=0$ is $(-3,5)$.







  15. If the line $2 x+y=3$ is tangent to the curve $y=k x^{2}$, find the value of $k$.



  16. solution



    $\begin{aligned}
    \text{Curve }: y&=k x^{2},\\\\
    \therefore\ \text{ Gradient of tangent } &=\frac{d y}{d x}\\\\
    &=2 k x\\\\
    \text{Tangent }: 2 x+y&=3 \\\\
    y&=-2 x+3\\\\
    \therefore\ \text{ Gradient of tangent } &=-2\\\\
    \therefore\ 2 k x&=-2 \\\\
    x&=-\frac{1}{k}\\\\
    \end{aligned}$


    Substituting $x=-\dfrac{1}{k}$ in curve and line equations,


    $\begin{aligned}
    &\\
    y&=k\left(-\frac{1}{k}\right)^{2} \\\\
    y&=\frac{1}{k} \\\\
    \therefore\ \frac{1}{k}&=-2\left(-\frac{1}{k}\right)+3\\\\
    k&=-\frac{1}{3}
    \end{aligned}$






  17. Find an equation of the tangent line to the curve $y=x^{4}+1$ that is parallel to the line $32 x-y=15$.



  18. solution





    $\begin{aligned}
    \text { Curve: } y &=x^{4}+1 \\\\
    \therefore \text { Gradient of tangent } &=\frac{d y}{d x} \\\\
    &=4 x^{3} \\\\
    \text { Line: } 32 x-y &=15 \\\\
    y &=32 x-15 \\\\
    \therefore\ \text { Gradient of line } &=32 \\\\
    \end{aligned}$


    Since the tangent line to the curve is parallel to the line $32 x-y$,


    $\begin{aligned}
    &\\
    4 x^{3} &=32 \\\\
    x &=2 \\\\
    \text { When } x &=2, \\\\
    y &=(2)^{4}+1 \\\\
    &=17 \\\\
    \text { Let }\left(x_{1}, y_{1}\right) &=(2,17). \\\\
    \therefore\ \text { The equation of tangent at } & \left(x_{1}, y_{1}\right) \text { is } \\\\
    y-y_{1} &=m\left(x-x_{1}\right) \\\\
    \therefore\ y-17 &=32(x-2) \\\\
    \therefore\ 32 x-y &=47
    \end{aligned}$







  19. Find an equation of the normal line to the curve $y=\sqrt{x}$ that is parallel to the line $2 x+y=1$.



  20. solution



    $\begin{aligned}
    \text { Curve: } y &=\sqrt{x} \\\\
    \therefore \text { Gradient of tangent } &=\frac{d y}{d x} \\\\
    &=\frac{1}{2 \sqrt{x}} \\\\
    \therefore \text { Gradient of normal } &=-2 \sqrt{x} \\\\
    \text { Line }: 2 x+y &=1 \\\\
    \qquad y &=-2 x+1 \\\\
    \therefore \text { Gradient of line } &=-2 \\\\
    \end{aligned}$


    Since the normal line to the curve is parallel to the line $2 x+y =1$.


    $\begin{aligned}
    &\\
    -2 \sqrt{x}=-2 & \\\\
    \qquad x=1 & & \\\\
    \text { When } x=1, y=\sqrt{1}=1\\\\
    \text { Let } \left(x_{1}, y_{1}\right)=(1,1)\\\\
    \end{aligned}$


    $\therefore$ The equation of tangent at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y-1&=-2(x-1) \\\\
    2 x+y&=3
    \end{aligned}$

  21. Find an equation of the tangent line to the graph of $y=f(x)$ at $x=5$ if $f(5)=-3$ and $f^{\prime}(5)=4$.


  22. solution








    $\begin{aligned}
    &\text { Curve }: y=f(x)\\\\
    &\text { When } x=5,\\\\
    &y=f(5)=-3(\text { given })\\\\
    &\text { Let } \left(x_{1}, y_{1}\right)=(5,-3)\\\\
    \end{aligned}$


    The gradient of tangent to the curve at $x=5$ is $m=f^{\prime}(5)=4$ (given)


    $\therefore$ The equation of tangent at $\left(x_{1}, y_{1}\right)$ is


    $\begin{aligned}
    &\\
    y+3&=4(x-5)\\\\
    4 x-y&=23
    \end{aligned}$






  • If the tangent line to the curve $y=f(x)$ at $(4,3)$ cuts the $y$ - axis at $(0,2)$, find $f(4)$
    and $f^{\prime}(4)$.



  • solution
    The tangent line to the curve $y=f(x)$ at $(4,3)$ cuts the $y$-axis at $(0,2)$.


    $\begin{aligned}
    &\\
    \therefore\ f(4)&=3\\\\
    \therefore\ f^{\prime}(4)&= \text{ gradient of tangent}\\\\
    &=\frac{3-2}{4-0} \\\\
    &=\frac{1}{4}
    \end{aligned}$






  • If the tangent lines to the curve $y=4 x^{2}-x^{3}$ at the points where $x=-1$ and $x=2$ intersect
    at $P$, find the coordinates of the point $P$.



  • solution







    $\begin{aligned}
    \text{Curve }: y&=4 x^{2}-x^{3}\\\\
    \text{When } x&=-1,\\\\
    y &=4(-1)^{2}-(-1)^{3} \\\\
    &=5\\\\
    \text{When } x&=2,\\\\
    y &=4(2)^{2}-(2)^{3} \\\\
    &=8\\\\
    \end{aligned}$


    Let $\left(x_{1}, y_{1}\right)=(-1,5)$ and $\left(x_{2}, y_{2}\right)=(2,8)$.


    $\begin{aligned}
    &\\
    \dfrac{d y}{d x}=8 x-3 x^{2}\\\\
    \end{aligned}$



    Let the gradient of tangents at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be $m_{1}$ and $m_{2}$ respectively.



    $\begin{aligned}
    &\\
    \therefore\ m_{1} &=\left.\dfrac{d y}{d x}\right|_{(-1,5)} \\\\
    &=8(-1)-3(-1)^{2} \\\\
    &=-11 \\\\
    m_{2} &=\left.\dfrac{d y}{d x}\right|_{(2,8)} \\\\
    &=8(2)-3(2)^{2} \\\\
    &=4\\\\
    \end{aligned}$


    Let the point of intersection of two tangents be $(a, b)$.


    $\begin{aligned}
    &\\
    \dfrac{b-5}{a+1} &=-11 \\\\
    11 a+b &=-6 \\\\
    \dfrac{b-8}{a-2} &=4 \\\\
    4 a-b &=0\\\\
    \end{aligned}$



    Solving equations (1) and (2) yields $a=-\dfrac{2}{5}$ and $b=-\dfrac{8}{5}$



    $\begin{aligned}
    &\\
    \therefore\ P=\left(-\dfrac{2}{5},-\dfrac{8}{5}\right) .
    \end{aligned}$








  • Find the coordinates of point or points on the curve $y=x^{4}-2 x^{2}+3$ at which the curve has
    horizontal tangent(s).



  • solution



    $\begin{aligned}
    \text{Curve }: y&=x^{4}-2 x^{2}+3\\\\
    \frac{d y}{d x} &=4 x^{3}-4 x \\\\
    &=4 x\left(x^{2}-1\right) \\\\
    &=4 x(x+1)(x-1)\\\\
    \end{aligned}$


    For horizontal tangents,


    $\begin{aligned}
    &\\
    \frac{d y}{d x} &=0 . \\\\
    4 x(x+1)(x-1) &=0 \\\\
    \therefore x=-1 \text { or } x &=0 \text { or } x=1 . \\\\
    x=-1 \Rightarrow y &=(-1)^{4}-2(-1)^{2}+3=2 \\\\
    x=0 \Rightarrow y &=(0)^{4}-2(0)^{2}+3=3 \\\\
    x=1 \Rightarrow y &=(1)^{4}-2(1)^{2}+3=2\\\\
    \end{aligned}$


    The points on the curve $y=x^{4}-2 x^{2}+3$ at which the curve
    has horizontal tangents are $(-1,2),(0,3)$ and $(1,2)$.









  • The curve $y=x^{3}+a x^{2}+b x+c$, where $a, b$ and $c$ are real constants, touches the $x$-axis at
    $x=1$ and cuts the $x$-axis at $x=4$. Find (i) the values of $a, b$ and $c$, (ii) the equation of the
    tangent to the curve at $x=0$.


  • solution



    Curve: $y=x^{3}+a x^{2}+b x+c\\\\ $


    Since the curve touches the $x$-axis at $x=1$ and cuts the $x$-axis at $x=4$, the points
    $(1,0)$ and $(4,0)$ lie on the curve and the gradient of tangent at $(1,0)$ is 0 .


    $\begin{aligned}
    &\\
    \therefore(1)^{3}+a(1)^{2}+b(1)+c &=0 \\\\
    a+b+c &=-1 \ldots(1)\\\\
    (4)^{3}+a(4)^{2}+b(4)+c &=0 \\\\
    16 a+4 b+c &=-64 \ldots(2) \\\\
    \text{By equation (2)- equation(1)} & \\\\
    15 a+3 b &=-63 \\\\
    5 a+b &=-21 \ldots(3)\\\\
    \end{aligned}$



    The gradient of the tangent at any point $(x, y)$ on the curve is $\frac{d y}{d x}$.


    $\begin{aligned}
    &\\
    \frac{d y}{d x} &=3 x^{2}+2 a x+b \\\\
    \left.\frac{d y}{d x}\right|_{(1,0)} &=0 \\\\
    3+2 a+b &=0 \\\\
    2 a+b &=-3 \ldots(4)\\\\
    \text{By equation (3)- equation(4)} & \\\\
    3 a &=-18 \\\\
    a &=-6 \\\\
    \text { Substituting } a &=-6 \text { in (4), } \\\\
    -12+b &=-3 \\\\
    b &=9 \\\\
    \text { Substituting } a &=-6 \text { and } b=9 \text { in (1), } \\\\
    -6+9+c &=-1 \\\\
    c &=-4 \\\\
    \therefore\ y &=x^{3}-6 x^{2}+9 x-4.\\\\
    \end{aligned}$


    Substituting $a=-6$ and $b=9$ in (1),



    When $x=0, y=-4\\\\ $


    Hence $(0,-4)$ lies on the curve.


    $\therefore$ The gradient of the tangent at $(0,-4)$ on the curve is


    $\begin{aligned}
    &\\
    \left.\frac{d y}{d x}\right|_{(0,-4)}& =b=9 \\\\
    \therefore\ \text { The equation of tangent at } & (0,-4) \text { is } \\\\
    y-(-4) &=9(x-0) \\\\
    y &=9 x-4 .
    \end{aligned}$






  • Find all values of $m$ such that the line $y=m x+3$ is tangent to the curve $y=\frac{1}{2} x^{2}-x+5$.


  • solution





    $\begin{aligned}
    \text{ Curve }: y &= \frac{1}{2} x^{2}-x+5.\\\\
    \text{ Gradient of tangent is } \frac{d y}{d x} &= x-1\\\\
    \text{ Tangent }: y &= m x+3\\\\
    \text{ Gradient of tangent } &= m\\\\
    \therefore\ m &= x-1\\\\
    x &= m+1\\\\
    \text{Substituting } x &= m+1 \text{ in curve equation},\\\\
    y &= \frac{1}{2}(m+1)^{2}-(m+1)+5\\\\
    \text{Substituting } x &= m+1 \text{ in tangent equation}\\\\
    y &= m(m+1)+3\\\\
    \therefore\ \frac{1}{2}(m+1)^{2}-(m+1)+5 &= m(m+1)+3\\\\
    m = -3 \text{ or } m &= 1
    \end{aligned}$

  • If the tangent to the curve $y=2 x^{3}-3 x+5$ at the point where $x=-1$ intersects the curve again at $A$,
    find the coordinates of $A$.





  • solution



    $\begin{aligned}
    \text{ Curve }: y &= 2 x^{3}-3 x+5\\\\
    \text{ When} x &= -1,\\\\
    y &= 2(-1)^{3}-3(-1)+5 &= 6\\\\
    \frac{d y}{d x} &= 6 x^{2}-3\\\\
    &= 3\left(2 x^{2}-1\right)\\\\
    m &= \left.\frac{d y}{d x}\right|_{(-1,6)}\\\\
    &= 3\\\\
    \end{aligned}$


    Let another point of intersection of curve and tangent be $(a, b)$.



    $\begin{aligned}
    &\\
    \therefore b &= 2 a^{3}-3 a+5\\\\
    \text{Since, } \frac{b-6}{a+1} &= 3\\\\
    \frac{2 a^{3}-3 a+5-6}{a+1} &= 3\\\\
    a &= 2\\\\
    \therefore b &= 2(2)^{3}-3(2)+5\\\\
    &= 15\\\\
    \end{aligned}$


    Thus, the coordinates of the point $A $ is $(2,15)$.






  • If the lines passing through the point $(2,3)$ are tangent to the curve $y=3 x-x^{2}$, find the coordinates
    of the points on the curve where the tangents meet the curve.



  • solution



    $\begin{aligned}
    &\text { Curve: } y=3 x-x^{2} \\\\
    &\frac{d y}{d x}=3-2 x \\\\
    &\text { Let }(a, b) \text { be the point on the curve } \\\\
    &\text { where the tangent exists. } \\\\
    &\therefore b=3 a-a^{2} \\\\
    &m=\left.\frac{d y}{d x}\right|_{(a, b)}=3-2 a \\\\
    &\text { Since the tangent at }(a, b) \text { pass } \\\\
    &\text { through the point } (2,3), \\\\
    &\frac{b-3}{a-2}=3-2 a \\\\
    &\frac{3 a-a^{2}-3}{a-2}=3-2 a \\\\
    &\therefore a=1(\text { or }) a=3 \\\\
    &\text { When } a=1, b=3(1)-(1)^{2}=2 \\\\
    &\text { When } a=3, b=3(3)-(3)^{2}=0 \\\\
    &\therefore \text { The tangents meet the curve at }(1,2) \\\\
    &\text { and }(3,0) \text {. }
    \end{aligned}$

    Posting Komentar untuk "Calculus Exercise (4) : Tangent Line and Normal Line to a Curve"