Lompat ke konten Lompat ke sidebar Lompat ke footer

Widget Atas Posting

 Tulis Artikel dan dapatkan Bayaran Tiap Kunjungan Rp 10-25 / kunjungan. JOIN SEKARANG || INFO LEBIH LANJUT

Practice Problems : The Remainder and Factor Theorem











1.        What number should be added to $ \displaystyle 2x^3 - 3x^2 - 8x$ so that the resulting polynomial leaves the remainder $ \displaystyle 10$ when divided by $ \displaystyle 2x + 1$?






Show/Hide Solution














Let the number to be added be $ \displaystyle k$ and the resulting polynomial be $ \displaystyle f(x)$.


$ \displaystyle \therefore \ f(x)=2{{x}^{3}}-3{{x}^{2}}-8x+k$


When $ \displaystyle f(x)$ is divided by $ \displaystyle 2x+1$, the remainder is 10.


$ \displaystyle \begin{array}{l}\therefore \ f\left( {-\displaystyle \frac{1}{2}} \right)=10\\\\\ \ 2{{\left( {-\displaystyle \frac{1}{2}} \right)}^{3}}-3{{\left( {-\displaystyle \frac{1}{2}} \right)}^{2}}-8\left( {-\displaystyle \frac{1}{2}} \right)+k=10\\\\\therefore \ -\displaystyle \frac{1}{4}-\displaystyle \frac{3}{4}+4+k=10\\\\\therefore \ k=7\end{array}$



Hence, the number to be added is 10.









2.        What number should be subtracted from $ \displaystyle 6x^3 + 7x^2 - 9x+12$ so that $ \displaystyle 3x - 1$ is the factor of the resulting polynomial?







Show/Hide Solution














Let the number to be subtracted be $ \displaystyle k$ and the resulting polynomial be $ \displaystyle f(x)$.



$ \displaystyle \therefore \ f(x)=6x^3 + 7x^2 - 9x+12-k$



Since $ \displaystyle 3x - 1$ is the factor of $ \displaystyle f(x)$,



$ \displaystyle \begin{array}{l}\ \ f\left( {\displaystyle \frac{1}{3}} \right)=0\\\\\ \ 6{{\left( {\displaystyle \frac{1}{3}} \right)}^{3}}+7{{\left( {\displaystyle \frac{1}{3}} \right)}^{2}}-9\left( {\displaystyle \frac{1}{3}} \right)+12-k=0\\\\\therefore \ \displaystyle \frac{2}{9}+\displaystyle \frac{7}{9}-3+12-k=0\\\\\therefore \ k=10\end{array}$




Hence, the number to be subtracted is 10.









3.        When divided by $ \displaystyle x - 3$ the polynomials $ \displaystyle x^3 - px^2 + x + 6$ and $ \displaystyle 2x^3 - x^2 - (p + 3) x - 6$ leave the same remainder. Find the value of $ \displaystyle p$.






Show/Hide Solution













Let $ \displaystyle f(x)={{x}^{3}}-p{{x}^{2}}+x+6$ and $ \displaystyle g(x)=2x^3 - x^2 - (p + 3) x - 6$


$ \displaystyle f(x)$ and $ \displaystyle g(x)$ leave the same remainder when divided by $ \displaystyle x - 3$,


$ \displaystyle \begin{array}{l}\therefore \ f(3)=g(3)\\\\\ \ \ {{(3)}^{3}}-p{{(3)}^{2}}+(3)+6=2{{(3)}^{3}}-{{(3)}^{2}}-(p+3)(3)-6\\\\\ \ \ 27-9p+9=54-9-3p-9-6\\\ \ \\\therefore \ 36-9p=30-3p\ \\\\\therefore \ p=1\ \end{array}$












4.       Using remainder theorem, find the value of $ \displaystyle a$ if the division of $ \displaystyle x^3 + 5x^2 - ax + 6$ by $ \displaystyle x -1$ leaves the remainder $ \displaystyle 2a$.






Show/Hide Solution














$ \displaystyle \begin{array}{l}\ \ \ \text{Let}\ f(x)={{x}^{3}}+5{{x}^{2}}-ax+6\\\\\ \ \ \text{When}\ f(x)\ \text{is divided by }x-1,\ \\\\\ \ \ \text{the remainder}\ =2a\\\\\therefore \ f(1)=2a\\\\\ \ \ {{1}^{3}}+5{{(1)}^{2}}-a(1)+6=2a\\\\\ \ \ 1+5-a+6=2a\\\\\therefore \ 3a=12\\\\\ \ \ a=4\ \ \ \end{array}$












5.        Find the value of the constants $ \displaystyle a$ and $ \displaystyle b$, if $ \displaystyle x - 2$ and $ \displaystyle x + 3$ are both factors of the expression $ \displaystyle x^3 + ax^2 + bx - 12$.






Show/Hide Solution













$ \displaystyle \begin{array}{l}\ \ \ \text{Let}\ f(x)={{x}^{3}}+a{{x}^{2}}+bx-12\\\\\ \ \ (x-2)\ \text{and}\ (x+3)\ \text{are factors of }f(x).\ \\\\\therefore \ f(2)=0\\\\\ \ \ {{(2)}^{3}}+a{{(2)}^{2}}+b(2)-12=0\\\\\therefore \ \ 8+4a+2b-12=0\\\\\therefore \ 2a+b=2---(1)\\\\\ \ \text{Again}\ f(-3)=0\\\\\ \ \ {{(-3)}^{3}}+a{{(-3)}^{2}}+b(-3)-12=0\\\\\therefore \ \ -27+9a-3b-12=0\\\\\therefore \ \ 3a-b=13---(2)\\\\\ \ \ (1)+(2)\Rightarrow 5a=15\\\\\therefore \ \ a=3\\\\\therefore \ 2\left( 3 \right)+b=2\\\\\therefore \ b=-4\end{array}$













6.        If $ \displaystyle x + 2$ and $ \displaystyle x - 3$ are factors of $ \displaystyle x^3 + ax + b$, find the values of $ \displaystyle a$ and $ \displaystyle b$.
With these values of $ \displaystyle a$ and $ \displaystyle b$, factorise the given expression.








Show/Hide Solution











$ \displaystyle \begin{array}{l}\ \ \ \text{Let}\ f(x)={{x}^{3}}+ax+b\\\\\ \ \ (x+2)\ \text{and}\ (x-3)\ \text{are factors of }f(x).\ \\\\\therefore \ f(-2)=0\\\\\ \ \ {{(-2)}^{3}}+a(-2)+b=0\\\\\therefore \ \ -8-2a+b=0\\\\\therefore \ -2a+b=8---(1)\\\\\ \ \text{Again}\ f(3)=0\\\\\ \ \ {{(3)}^{3}}+a(3)+b=0\\\\\therefore \ \ 27+3a+b=0\\\\\therefore \ \ 3a+b=-27---(2)\\\\\ \ \ (2)-(1)\Rightarrow 5a=-35\\\\\therefore \ \ a=-7\\\\\therefore \ \ -2\left( {-7} \right)+b=8\\\\\therefore \ \ b=-6\\\\\therefore \ \ f(x)={{x}^{3}}-7x-6\\\\\ \ \ \ \text{Let}\ {{x}^{3}}-7x-6=(x+2)(x-3)(x+k)\\\\\therefore \ \ {{x}^{3}}-7x-6={{x}^{3}}+\left( {k-1} \right){{x}^{2}}-\left( {k+6} \right)x-6k\\\\\therefore \ k-1=0\Rightarrow k=1\\\\\therefore \ \ f(x)=(x+2)(x-3)(x+1)\\\ \ \end{array}$













7.        Given that $ \displaystyle x - 2$ is a factor of the expression $ \displaystyle x^3 + ax^2 + bx + 6$.
When this expression is divided by $ \displaystyle x - 3$, it leaves the remainder $3$. Find the values of $ \displaystyle a$ and $ \displaystyle b$.








Show/Hide Solution











Let $f(x)=x^{3}+a x^{2}+b x+6\\\\ $


$x-2$ is a factor of $f(x)$.


$\begin{aligned}
&\\
&\therefore\ f(2)=0\\\\
&2^{3}+a(2)^{2}+2 b+6=0\\\\
&2 a+b=-7 \ldots(1)\\\\
\end{aligned}$


When $f(x)$ is divided by $x-3$, the remainder is $3$.


$\begin{aligned}
&\\
&\therefore\ f(3) =3 \\\\
&3^{3}+a(3)^{2}+3 b+6 =3 \\\\
&3 a+b =-10 \cdots(2)\\\\
\end{aligned}$


By equation $(2)$ - equation $(1)$,


$\begin{aligned}
&\\
a=-3\\\\
\end{aligned}$


Substituting $a=-3$ in equation $(1)$,


$\begin{aligned}
&\\
&2(-3)+b=-7\\\\
&\therefore\ b=-1
\end{aligned}$
















8.        If $ \displaystyle x - 2$ is a factor of the expression $ \displaystyle 2x^3 + ax^2 + bx - 14$ and when the expression is divided by $ \displaystyle x - 3$,
it leaves a remainder $ \displaystyle 52$, find the values of $ \displaystyle a$ and $ \displaystyle b$.







Show/Hide Solution











Let $f(x)=2x^{3}+a x^{2}+b x-14\\\\ $


$x-2$ is a factor of $f(x)$.


$\begin{aligned}
&\\
&\therefore\ f(2)=0\\\\
&2(2)^{3}+a (2)^{2}+b (2)-14=0\\\\
&2 a+b=-1 \ldots(1)\\\\
\end{aligned}$


When $f(x)$ is divided by $x-3$, the remainder is $52$.


$\begin{aligned}
&\\
&\therefore\ f(3) =52 \\\\
&2(3)^{3}+a (3)^{2}+b (3)-14 =52 \\\\
&3 a+b =4 \cdots(2)\\\\
\end{aligned}$


By equation $(2)$ - equation $(1)$,


$\begin{aligned}
&\\
a=5\\\\
\end{aligned}$


Substituting $a=5$ in equation $(1)$,


$\begin{aligned}
&\\
&2(5)+b=-1\\\\
&\therefore\ b=-11
\end{aligned}$
















9.        If $ ax^3 + 3x^2 + bx - 3$ has a factor $2x + 3$ and leaves remainder $-3$
when divided by $x + 2$, find the values of $ a$ and $ \displaystyle b$. With these values of $a$ and $ b$, factorise the given expression.







Show/Hide Solution











Let $f(x)=ax^3 + 3x^2 + bx - 3\\\\ $


$2x+3$ is a factor of $f(x)$.


$\begin{aligned}
&\\
&\therefore\ f\left(-\dfrac{3}{2}\right)=0\\\\
&a\left(-\dfrac{3}{2}\right)^3 + 3\left(-\dfrac{3}{2}\right)^2 + b\left(-\dfrac{3}{2}\right) - 3=0\\\\
&-\frac{27}{8}a-\frac{3}{2}b + \frac{15}{4}=0\\\\
&9 a+4b=10 \ldots(1)\\\\
\end{aligned}$


When $f(x)$ is divided by $x+2$, the remainder is $-3$.


$\begin{aligned}
&\\
&\therefore\ f(-2) =-3 \\\\
&a(-2)^3 + 3(-2)^2 + b(-2) - 3 =-3 \\\\
&4 a+b =6 \\\\
&b =6-4a \cdots(2)\\\\
\end{aligned}$


Substituting $b =6-4a$ in equation $(1)$,


$\begin{aligned}
&\\
9 a+4(6-4a)=10\\\\
&a=2\\\\
\end{aligned}$


Substituting $a=2$ in equation $(2)$,


$\begin{aligned}
&\\
&b =6-4(2)\\\\
&\therefore\ b=-2\\\\
&\therefore\ f(x)=2x^3 + 3x^2 -2x - 3\\\\
\end{aligned}$


Since $f(x)$ is a cubic polynomial with factor $2x+3$ and leading coefficient $2$,
assume that $f(x) = (2x+3)(x^2 + px + q)$.


$\begin{aligned}
&\\
&2x^3 + 3x^2 -2x - 3=(2x+3)(x^2 + px + q)\\\\
&\therefore\ 2x^3 + 3x^2 -2x - 3=2x^3 + (2p+3)x^2 + (3p+2q)x + 3q\\\\
&\text{Equating the respective terms}\\\\
& 3q=-3\\\\
&\therefore\ q=-1\\\\
& 2p+3 = 3\\\\
&\therefore\ p=0\\\\
&\therefore\ f(x) = (2x+3)(x^2 -1)\\\\
&\therefore\ f(x) = (2x+3)(x +1)(x-1)
\end{aligned}$













10.      Given $ \displaystyle f (x) = ax^2 + bx + 2$ and $ \displaystyle g (x) = bx^2 + ax + 1$. If $ \displaystyle x - 2$ is a factor of $ \displaystyle f (x)$
but leaves the remainder $ \displaystyle -15$ when it divides $ \displaystyle g (x)$, find the values of $ \displaystyle a$ and $ \displaystyle b$. With these values of $ \displaystyle a$ and $ \displaystyle b$,
factorise the expression $ \displaystyle f (x) + g (x) + 4x^2 + 7x$.







Show/Hide Solution











$\begin{aligned}
&f(x)=a x^{2}+b x+2\\\\
&x-2 \text{ is a factor of } f(x)\\\\
&\therefore\ a(2)^{2}+2 b+2=0\\\\
&2 a+b=-1 \ldots(1)\\\\
&g(x)=b x^{2}+a x+1\\\\
\end{aligned}$


When g(x) is divided by $x-2$, the remainder is $-15$.


$\begin{aligned}
&\\
\therefore g(2)&=-15 \\\\
b(2)^{2}+2 a+1 &=-15 \\\\
a+2 b &=-8 \ldots(2) \\\\
(1)+(2) \Rightarrow 3 a+3 b &=-9 \\\\
a+b &=-3 \ldots(3) \\\\
(1)-(2) \Rightarrow a-b &=7 \ldots(4) \\\\
(3)+(4) \Rightarrow 2 a &=4 \\\\
a &=2 \\\\
(3)-(4) \Rightarrow 2 b &=-10 \\\\
b &=-5\\\\
\end{aligned}$


$\begin{aligned}
\text { Let } h(x) &=f(x)+g(x)+4 x^{2}+7 x \\\\
&=2 x^{2}-5 x+2-5 x^{2}+2 x+1+4 x^{2}+7 x \\\\
&=x^{2}-4 x+3 \\\\
&=(x-1)(x-3)
\end{aligned}$











11.     When $ \displaystyle x^3 - 2x^2 + px - q$ is divided by $ \displaystyle x^2 - 2x - 3$, the remainder is $ \displaystyle x - 6$, What are the values of $ \displaystyle p$ and $ \displaystyle q$
respectively ?







Show/Hide Solution











Let $f(x)=x^{3}-2 x^{2}+p x-q\\\\ $.


When $f(x)$ is divided by $x^{2}-2 x-3$,
the remainder is $x-6\\\\ $.


Let $Q(x)$ be the quotient when
$f(x)$ is divided by $x^{2}-2 x-3$.


$\begin{aligned}
& \\
& \therefore\ f(x)=Q(x)\left(x^{2}-2 x-3\right)+x-6 \\\\
& x^{3}-2 x^{2}+p x-q=Q(x)(x+1)(x-3)+x-6\\\\
& \text{When } x=-1,\\\\
&(-1)^{3}-2(-1)^{2}-p-q=-7 \\\\
& p+q=4 \ldots(1)\\\\
& \text{When } x=3,\\\\
&(3)^{3}-2(3)^{2}+p(3)-q=-3 \\\\
& 3 p-q=-12 \ldots(2)\\\\
& \text{By equation} (1) + \text{ equation } (2)\\\\
& 4 p =-8 \\\\
& p =-2\\\\
&\text{Substituting } p=-2 \text{ in equation } (1),\\\\
& -2+q=4 \\\\
& q=6
\end{aligned}$













12.      If $ \displaystyle x + k$ is a common factor of $ \displaystyle x^2 + px + q$ and $ \displaystyle x^2 + lx + m$, Find the value of $ \displaystyle k$
in terms of $ \displaystyle p, q, l$ and $ \displaystyle m$.







Show/Hide Solution











$\begin{aligned}
\text { Let } f(x) &=x^{2}+p x+q \\\\
g(x) &=x^{2}+l x+m \\\\
\end{aligned}$



$x+k$ is a common factor of $f(x)$ and $g(x)$.


$\begin{aligned}
& \\
& \therefore \quad f(-k)=0 \\\\
& (-k)^{2}+p(-k)+q=0 \\\\
& k^{2}-p k+q=0 \ldots(1) \\\\
& g(-k)=0 \\\\
&(-k)^{2}+L(-k)+m \\\\
& k^{2}-l k+m=0 \ldots(2)\\\\
\end{aligned}$


By equation (1) - equation (2),


$\begin{aligned}
&\\
& -p k+l k +q-m=0 \\\\
& (l-p) k =m-q \\\\
& k =\dfrac{m-q}{l-p}
\end{aligned}$













13.      When a polynomial $ \displaystyle f(x)$ is divided by $ \displaystyle x - 3$ and $ \displaystyle x + 6$, the respective remainders are $ \displaystyle 7$ and $ \displaystyle 22$. What is the remainder when $ \displaystyle f(x)$ is divided by $ \displaystyle (x - 3) (x + 6)$ ?






Show/Hide Solution













Let $f(x)$ be a polynomial.By the problem,


$\begin{aligned}
&\\
f(3)&=7 \\\\
f(-6)&=22\\\\
\end{aligned}$


Let $Q(x)$ be the quotiont and $a x+b$ be the remainder When $f(x)$ is divided by $(x-3)(x+6)$


$\begin{aligned}
&\\
\therefore f(x) &=Q(x)(x-3)(x+b)+a x+b \\\\
f(3) &=3 a+b=7 \ldots(1) \\\\
f(-6) &=-6 a+b=22 \ldots(2)\\\\
\end{aligned}$


By equation $(1)$ - equation $(2)$,


$\begin{aligned}
&\\
9 a &=-15 \\\\
a &=-\dfrac{5}{3}\\\\
\end{aligned}$



Substituting $a=-\dfrac{5}{3}$ in equation $(1)$,


$\begin{aligned}
&\\
3\left(-\frac{5}{3}\right)+b=7 \\\\
b=12\\\\
\end{aligned}$


$\therefore$ When $f(x)$ is divided by $(x-3)(x+6)$, the remainder is $-\dfrac{5}{3} x+12$.







$ \displaystyle (x-3)(x+6)$ သည္ polynomial of second degree ျဖစ္ပါသည္။



$ \displaystyle f(x)$ ကို $ \displaystyle (x-3)(x+6)$ ႏွင့္ စားေသာ အႂကြင္းသည္ စားကိန္းေအာက္ တစ္ထပ္ေလ်ာ့ပါမည္။။



ထို႔ေၾကာင့္ အႂကြင္းသည္ $ \displaystyle ax + b$ ပံုစံျဖစ္ပါမည္။










14.      Given that $ \displaystyle f (x) = x^3 + ax^2 + bx + c$. If $ \displaystyle f (1) = f(2) = 0$ and $ \displaystyle f(4) = f(0)$, find $ \displaystyle a, b$ and $ \displaystyle c$.








Show/Hide Solution











$\begin{aligned}
&f(x)=x^{3}+a x^{2}+b x+c \\\\
&f(1)=0 \\\\
&1^{3}+a(1)^{2}+b(1)+c=0 \\\\
&a+b+c=-1 \cdots(1) \\\\
&f(2)=0 \\\\
&2^{3}+a(2)^{2}+b(2)+c=0 \\\\
&4 a+2 b+c=-8 \ldots(2)\\\\
&f(4)=f(0) \\\\
&4^{3}+a(4)^{2}+b(4)+c=c \\\\
&4 a+b=-16 \ldots(3)\\\\
\end{aligned}$



By equation $(2)$ - equation $(1)$,



$\begin{aligned}
&\\
3 a+b&=-7 \ldots(4)\\\\
\end{aligned}$



By equation $(3)$ - equation $(4)$,


$\begin{aligned}
&\\
a=-9\\\\
\end{aligned}$


Substituting $a=-9$ in equation $(4)$,


$\begin{aligned}
&\\
3(-9)+b &=-7 \\\\
b &=20\\\\
\end{aligned}$



Substituting $a=-9$ and $b=20$ in equation $(1)$,


$\begin{aligned}
&\\
-9+20+c &=-1 \\\\
c &=-12
\end{aligned}$













15.      If $ \displaystyle x – 1$ is a factor of $ \displaystyle Ax^3 + Bx^2 - 36x + 22$ and $ \displaystyle 2^B = 64^A$, find $ \displaystyle A$ and $ \displaystyle B$.







Show/Hide Solution











$\begin{aligned}
&\text { Let } f(x)=A x^{3}+B x^{2}-36 x+22. \\\\
&x-1 \text { is a factor of } f(x). \\\\
&\therefore\ A+B-36+22=0 \\\\
&A+B=14 \ldots (1) \\\\
&2^{B}=64^{A}(\text { given }) \\\\
&2^{B}=2^{6 A} \\\\
&\therefore B=6 A \ldots (2)\\\\
\end{aligned}$


Substituting $B=6 A$ in equation $(1)$,


$\begin{aligned}
&\\
A+6 A &=14 \\\\
7 A &=14 \\\\
A &=2\\\\
\end{aligned}$



Substituting $A=2$ in equation $(2)$.


$\begin{aligned}
&\\
B & =6(2)\\\\
&=12\\\\
\end{aligned}$












16.      When k is subtracted from $ \displaystyle 27x^3 - 9x^2 - 6x - 5$, it is exactly divisible by $3x - 1$, find $ \displaystyle k$.







Show/Hide Solution











Let $f(x)=27 x^{3}-9 x^{2}-6 x-5-k\\\\ $


$f(x)$ is divisible by $3 x-1$,


$\begin{aligned}
&\\
& \therefore\ f\left(\dfrac{1}{3}\right)=0 \\\\
& 27\left(\dfrac{1}{3}\right)^{3}-9\left(\dfrac{1}{3}\right)^{2}-6\left(\dfrac{1}{3}\right)-5-k=0 \\\\
& 1-1-1-2-5-k=0 \\\\
& k=-8
\end{aligned}$














17.      Given that $f(x)=4x^3-4kx^2-x+k,\ \ $ $ g(x)=3x^2+(1-3k)x-k$ and $h(x)=f(x)+g(x)$. If $x-2$ is a factor
of $ h(x)$, find the value of If $ k$ and hence solve the equation $ h(x)=0$.







Show/Hide Solution











$\begin{aligned}
& f(x)=4 x^{3}-4 k x^{2}-x+k \\\\
& g(x)=3 x^{2}+(1-3 k) x-k \\\\
& h(x)=f(x)+g(x) \\\\
& \therefore\ h(x)=4 x^{3}+(3-4 k) x^{2}-3 k x \\\\
& x-2 \text { is a factor of } h(x) . \\\\
&\therefore\ h(2)=0 \\\\
& 4(2)^{3}+(3-4 k)(2)^{2}-3 k(2)=0 \\\\
& 32+12-16 k-6 k=0 \\\\
& 44-22 k=0 \\\\
& \therefore\ k=2
\end{aligned}$












Posting Komentar untuk "Practice Problems : The Remainder and Factor Theorem"